2024-09-06
土(tu)(tu)(tu)(tu)壤(rang)(rang)是(shi)生(sheng)(sheng)物(wu)多樣性最(zui)高的單一(yi)生(sheng)(sheng)境。據估計(ji),地(di)球(qiu)上可能59±15%的物(wu)種(zhong)(zhong)(zhong)棲息在(zai)(zai)土(tu)(tu)(tu)(tu)壤(rang)(rang)中,從(cong)結構最(zui)簡單的微生(sheng)(sheng)物(wu)到最(zui)復雜的哺乳動(dong)物(wu)[1]。土(tu)(tu)(tu)(tu)壤(rang)(rang)生(sheng)(sheng)物(wu)多樣性推動(dong)了(le)重要的生(sheng)(sheng)態(tai)過程,包括(kuo)分解、養分循環、碳封存和植物(wu)群落(luo)動(dong)態(tai)。有(you)研(yan)(yan)究(jiu)指出(chu),目前(qian)地(di)球(qiu)可能正在(zai)(zai)進入第六次物(wu)種(zhong)(zhong)(zhong)大滅絕。在(zai)(zai) 20 世紀,僅土(tu)(tu)(tu)(tu)地(di)利用(yong)變化(hua)的影響(xiang)就使地(di)球(qiu)喪失了(le)近 2.3 ± 1.7% 的物(wu)種(zhong)(zhong)(zhong)。如(ru)果假定地(di)球(qiu)的物(wu)種(zhong)(zhong)(zhong)多樣性為(wei)約 900 萬種(zhong)(zhong)(zhong),則喪失了(le)約 20 萬種(zhong)(zhong)(zhong)物(wu)種(zhong)(zhong)(zhong)[2]。因此,了(le)解土(tu)(tu)(tu)(tu)壤(rang)(rang)生(sheng)(sheng)物(wu)多樣性的動(dong)態(tai)變化(hua),對土(tu)(tu)(tu)(tu)壤(rang)(rang)生(sheng)(sheng)物(wu)多樣性進行監測和分析至關(guan)(guan)重要。eDNA(environmental DNA)技術是(shi)一(yi)項有(you)效、便捷的土(tu)(tu)(tu)(tu)壤(rang)(rang)生(sheng)(sheng)物(wu)多樣性監測手段,近年(nian)來逐漸(jian)受到科研(yan)(yan)工作者的重視。eDNA研(yan)(yan)究(jiu)中,所選基因引物(wu)和生(sheng)(sheng)境、關(guan)(guan)注(zhu)類(lei)(lei)群的適配度如(ru)何十分重要。下面分享一(yi)些(xie)近兩年(nian)的eDNA佳作,看看土(tu)(tu)(tu)(tu)壤(rang)(rang)環境中大家都在(zai)(zai)用(yong)哪些(xie)基因和引物(wu),關(guan)(guan)注(zhu)哪些(xie)生(sheng)(sheng)物(wu)類(lei)(lei)群吧。 2023年(nian)(nian),李志鵬等人(ren)在Global Ecology and Biogeography期(qi)刊上(shang)發(fa)表(biao)(biao)eDNA研究(jiu),分(fen)析了(le)中(zhong)(zhong)(zhong)國亞熱(re)帶(dai)和溫(wen)帶(dai)區(qu)(qu)(qu)域不(bu)(bu)同(tong)用(yong)地類型土(tu)壤中(zhong)(zhong)(zhong)的(de)(de)后(hou)生(sheng)(sheng)(sheng)動物(wu)和寄生(sheng)(sheng)(sheng)蟲(頂復門)的(de)(de)多樣(yang)(yang)性(xing)格(ge)局,揭示了(le)土(tu)地利(li)用(yong)變(bian)化對寄生(sheng)(sheng)(sheng)蟲多樣(yang)(yang)性(xing)及(ji)其與宿(su)主聯系的(de)(de)影響及(ji)機制。2024年(nian)(nian),李志鵬等人(ren)在Global Change Biology期(qi)刊上(shang)發(fa)表(biao)(biao)eDNA研究(jiu)[3],全(quan)面(mian)調查了(le)中(zhong)(zhong)(zhong)國亞熱(re)帶(dai)和溫(wen)帶(dai)區(qu)(qu)(qu)域13個城市中(zhong)(zhong)(zhong)不(bu)(bu)同(tong)土(tu)地利(li)用(yong)(森林、城郊(jiao)農田、居民區(qu)(qu)(qu)和公園)下的(de)(de)土(tu)壤,揭示了(le)土(tu)壤原(yuan)生(sheng)(sheng)(sheng)生(sheng)(sheng)(sheng)物(wu)及(ji)其獵(lie)物(wu)(細菌、真(zhen)(zhen)(zhen)菌)和宿(su)主(中(zhong)(zhong)(zhong)大型動物(wu))的(de)(de)空間分(fen)布格(ge)局。文章利(li)用(yong)18S rRNA基因V4區(qu)(qu)(qu)、16S rRNA基因V4V5區(qu)(qu)(qu)、真(zhen)(zhen)(zhen)菌內(nei)轉錄(lu)間隔區(qu)(qu)(qu)(ITS1)分(fen)別探究(jiu)真(zhen)(zhen)(zhen)核(he)生(sheng)(sheng)(sheng)物(wu)、原(yuan)核(he)生(sheng)(sheng)(sheng)物(wu)和真(zhen)(zhen)(zhen)菌類群。2023年(nian)(nian),姚海(hai)鳳等人(ren)在Science of The Total Environment期(qi)刊上(shang)發(fa)表(biao)(biao)eDNA研究(jiu),分(fen)析了(le)中(zhong)(zhong)(zhong)國廈門城市和城郊(jiao)不(bu)(bu)同(tong)公園植被(bei)類型中(zhong)(zhong)(zhong)細菌、真(zhen)(zhen)(zhen)菌、原(yuan)生(sheng)(sheng)(sheng)生(sheng)(sheng)(sheng)物(wu)、線蟲、中(zhong)(zhong)(zhong)/大型土(tu)壤動物(wu)的(de)(de)生(sheng)(sheng)(sheng)物(wu)多樣(yang)(yang)性(xing),調查了(le)城市化程(cheng)度(城市與城郊(jiao))和植被(bei)類型(草(cao)(cao)(cao)坪(ping)、灌(guan)木-草(cao)(cao)(cao)坪(ping)、喬木-草(cao)(cao)(cao)坪(ping)和喬木-灌(guan)木混合物(wu))對公園中(zhong)(zhong)(zhong)土(tu)壤生(sheng)(sheng)(sheng)物(wu)多樣(yang)(yang)性(xing)的(de)(de)影響。
eDNA技術(shu)也可用(yong)于檢測稀(xi)有、瀕危的(de)物種(zhong)。2023年,Mynhardt等人在(zai)Biodiversity and Conservation期刊(kan)上發(fa)表eDNA研(yan)究,發(fa)現消失87年的(de)罕見物種(zhong)德溫頓金鼴鼠重現南非[4]。 此外,通過eDNA技術,可以(yi)對(dui)不(bu)同營養(yang)級(ji)的(de)(de)生(sheng)(sheng)物類群進行研(yan)究,分析多(duo)類群生(sheng)(sheng)物之(zhi)間相互作用的(de)(de)復(fu)雜(za)網(wang)絡。2024年,Calderón-Sanou等人在Soil Biology and Biochemistry期刊(kan)(kan)上發表eDNA研(yan)究,對(dui)法國(guo)阿(a)爾(er)卑斯(si)山廣(guang)泛(fan)的(de)(de)土(tu)(tu)壤生(sheng)(sheng)物多(duo)樣(yang)性進行監(jian)測[5]。2024年,柳旭等人在PNAS期刊(kan)(kan)上發表eDNA研(yan)究,在全(quan)球 20 個地區的(de)(de)土(tu)(tu)壤調(diao)查中探索(suo)了涉及細菌、原生(sheng)(sheng)生(sheng)(sheng)物、真菌和無(wu)脊椎動物的(de)(de)多(duo)營養(yang)土(tu)(tu)壤生(sheng)(sheng)物之(zhi)間的(de)(de)生(sheng)(sheng)態網(wang)絡,證明了土(tu)(tu)壤生(sheng)(sheng)物之(zhi)間廣(guang)泛(fan)存在的(de)(de)正向關(guan)聯,以(yi)及它(ta)們(men)在維(wei)持全(quan)球土(tu)(tu)壤生(sheng)(sheng)物多(duo)樣(yang)性復(fu)雜(za)結構中的(de)(de)關(guan)鍵作用[6]。
土壤eDNA送(song)樣指南
非(fei)根際土壤(bulk soil) (1)采(cai)(cai)樣前應對采(cai)(cai)樣工具及(ji)樣本袋(dai)或(huo)(huo)取樣管等進行(xing)滅(mie)菌(jun)處(chu)理,或(huo)(huo)用待采(cai)(cai)土壤(rang)樣本擦拭; (2)根據實驗設計選擇具有(you)代(dai)表(biao)性(xing)的(de)土壤(rang); (3)建議(yi)運(yun)用(yong)點狀取(qu)樣法(fa)(fa)中(zhong)常用(yong)的(de)五點取(qu)樣法(fa)(fa)采集(ji)(ji)土壤樣本(ben),即先(xian)確定對角(jiao)線的(de)中(zhong)點 作為中(zhong)心(xin)抽(chou)樣點,再(zai)在對角(jiao)線上選擇與(yu)中(zhong)心(xin)點距離相等(deng)的(de)點進(jin)行(xing)采樣;或(huo)者運(yun)用(yong)等(deng)距取(qu)樣法(fa)(fa),由抽(chou)樣的(de)比率決(jue)定距離或(huo)間隔,如果老師(shi)想多采集(ji)(ji)一(yi)些生(sheng)物(wu)學重復樣本(ben),建議(yi)用(yong) 此(ci)方法(fa)(fa); (4)采樣(yang)時(shi)需(xu)注意(yi)先去(qu)除表面浮土(tu),同(tong)時(shi)每(mei)個采樣(yang)點的(de)取土(tu)深度(du)及采樣(yang)量應均勻一(yi)致,一(yi)般根據需(xu)求可挖去(qu)距(ju)地表 5-20 cm 深度(du)的(de)土(tu)壤,且土(tu)樣(yang)上層與下層的(de)比例要(yao)相同(tong); (5)取完樣后(hou),去(qu)除(chu)可(ke)見雜質(zhi)(可(ke)過2 mm篩進(jin)行去(qu)除(chu)); (6)野外采集的土(tu)樣低溫運(yun)輸至實驗室,分裝完畢后,液氮速凍,-80℃冰箱(xiang)保存。 根際土(tu)壤(rhizosphere soil) 根(gen)際是(shi)一個很(hen)窄的范圍(wei)(wei),并不是(shi)直(zhi)接從(cong)根(gen)周(zhou)(zhou)圍(wei)(wei)取的土樣,嚴格(ge)的說是(shi)附著在根(gen)周(zhou)(zhou)圍(wei)(wei)的土壤, 通常是(shi)根(gen)周(zhou)(zhou)圍(wei)(wei)2mm直(zhi)徑范圍(wei)(wei)的土壤。取樣的時候是(shi)直(zhi)接將植物連根(gen)拔起(qi),抖掉根(gen)周(zhou)(zhou)圍(wei)(wei)松(song)散的土壤,剩下(xia)的是(shi)根(gen)際土。 (1)帶土挖出整(zheng)株植物的根系,挖出時盡可(ke)能(neng)多帶些(xie)土; (2)輕(qing)輕(qing)抖去(qu)根系(xi)上大塊的土壤,剪取約 15 g 的帶(dai)土根系(xi),置于裝(zhuang)有滅(mie)菌的 0.86% NaCl 溶液 (或無(wu)菌 PBS 緩沖液)的 25 ml 離心(xin)管中,并快(kuai)速帶(dai)回實驗室; (3)將上述離(li)心管(guan)放在冰中(zhong) 30 min,每隔(ge) 5 min 取出搖勻(yun) 1 次(ci); (4)去掉植株(zhu)根(gen)系,4 000 g、4 ℃低溫離心(xin) 30 min,然后去除上清液; (5)將所得土壤沉淀物(wu)保存(cun)在(zai)無菌 EP 管中(zhong),于-20 ℃備用,盡快(kuai)提取總 DNA;如果條件不允 許,可(ke)將樣品保存(cun)在(zai)-80℃冰箱。
1.Anthony, M. A., Bender, S. F. & Van Der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl. Acad. Sci. U.S.A. 120, e2304663120 (2023). 2.Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024). 3.Li, Z. et al. Land use decouples parasite–metazoan host biodiversity associations in soils across subtropical and temperate zones in China. Global Ecol Biogeogr 32, 2164–2176 (2023). Li, Z. et al. Colonization ability and uniformity of resources and environmental factors determine biological homogenization of soil protists in human land‐use systems. Global Change Biology 30, e17411 (2024). Yao, H. et al. Degree of urbanization and vegetation type shape soil biodiversity in city parks. Science of The Total Environment 899, 166437 (2023). 4.Mynhardt, S. et al. Environmental DNA from soil reveals the presence of a “lost” Afrotherian species. Biodivers Conserv (2023) doi:10.1007/s10531-023-02728-2. 5.Calderón-Sanou, I. et al. Mountain soil multitrophic networks shaped by the interplay between habitat and pedoclimatic conditions. Soil Biology and Biochemistry 190, 109282 (2024). 6.Liu, X. et al. Positive associations fuel soil biodiversity and ecological networks worldwide. Proc. Natl. Acad. Sci. U.S.A. 121, e2308769121 (2024).