国产午夜精品无码一区二区,国产成人无码网站,日本少妇xxxx做受,欧美视频二区欧美影视,女人被躁到高潮嗷嗷叫游戏

首頁> 關于我們 >新聞中心>技術分享>新聞詳情

強強聯合:類器官+單細胞轉錄組測序(二)

2024-02-18

各位老師大家(jia)好~上次小派(pai)為大家(jia)介紹了(le)“類(lei)器(qi)官+單(dan)細胞轉錄組(zu)測序 ”在(zai)指導類(lei)器(qi)官培養、研(yan)究生(sheng)長發(fa)育、探究病毒感染機制的詳細發(fa)文思路(lu)《詳見》,本周(zhou)我(wo)們繼續挖掘(jue)“類器(qi)(qi)官(guan)+單細(xi)胞轉錄(lu)組測序 ”在(zai)器(qi)(qi)官(guan)移植、疾(ji)病易感(gan)基因篩選上的應用(yong)。

值此新春(chun)佳節之際,小派也祝各位老師在新的一年里事業節節高升、文章每投必中、龍年萬事順(shun)意~



應用04

類(lei)器官(guan)移植治(zhi)療

文(wen)章題目:Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect[1]

發表期刊:Nature Communications

發表(biao)時(shi)間:2023.02

研(yan)究背景:誘導多能干細(xi)胞(bao)(bao)(iPSCs)是一種(zhong)很(hen)有(you)前(qian)景的(de)(de)(de)異(yi)體(ti)軟(ruan)(ruan)骨(gu)移(yi)植資源,可用(yong)于治療不能自(zi)(zi)發愈合的(de)(de)(de)關(guan)(guan)節軟(ruan)(ruan)骨(gu)缺損。由于關(guan)(guan)節軟(ruan)(ruan)骨(gu)的(de)(de)(de)修復能力有(you)限,故關(guan)(guan)節軟(ruan)(ruan)骨(gu)的(de)(de)(de)局(ju)灶性損傷或侵蝕經常導致(zhi)骨(gu)關(guan)(guan)節炎等病癥,迄今為止還沒有(you)修復軟(ruan)(ruan)骨(gu)的(de)(de)(de)藥物(wu)。通過將iPSCs分化成(cheng)軟(ruan)(ruan)骨(gu)細(xi)胞(bao)(bao),然后將其轉移(yi)到3D培養中,使iPSCs衍生(sheng)的(de)(de)(de)軟(ruan)(ruan)骨(gu)細(xi)胞(bao)(bao)產生(sheng)并(bing)在自(zi)(zi)身周圍積(ji)聚(ju)細(xi)胞(bao)(bao)外(wai)基質(zhi)(ECM),形成(cheng)軟(ruan)(ruan)骨(gu)組織顆粒,從而成(cheng)功地用(yong)iPSCs制造出了由軟(ruan)(ruan)骨(gu)細(xi)胞(bao)(bao)和(he) ECM 組成(cheng)的(de)(de)(de)軟(ruan)(ruan)骨(gu)。由于iPSCs具(ju)有(you)自(zi)(zi)我更新活性,異(yi)體(ti)iPSCs衍生(sheng)的(de)(de)(de)軟(ruan)(ruan)骨(gu)器官組織理論上可以無(wu)限量地生(sheng)產,并(bing)移(yi)植到不同(tong)的(de)(de)(de)患者(zhe)體(ti)內,從而解決了異(yi)體(ti)軟(ruan)(ruan)骨(gu)的(de)(de)(de)相關(guan)(guan)問題,如供體(ti)稀缺、疾病傳播風險、供體(ti)間軟(ruan)(ruan)骨(gu)質(zhi)量差異(yi)等。

類(lei)器官來源及種類(lei):

未(wei)分化(hua)的(de)(de)(de)食蟹猴iPSCs(cyiPSC)、cyiP5-Cart(移植前cyiPS-Cart)、完整的(de)(de)(de)關節軟骨(cyAC)、空白組軟骨缺(que)損中形成(cheng)的(de)(de)(de)纖維(wei)組織(cyFT),以及移植組軟骨缺(que)損中的(de)(de)(de)cyiPS-Cart(移植17周(zhou)后的(de)(de)(de)cyiP5-Cart)。

研究思路:

sch公眾號(2).jpg

研究結果:

在這項研究中,研究人員在不使用免疫抑制藥物的情況下,在靈長類動物模型中分析了主要組織相容性復合體 (MHC) 不匹配的 iPS 細胞衍生軟骨類器官的同種異體移植。

研究(jiu)(jiu)人員將(jiang)食蟹(xie)猴(hou)iPS 細胞 (cyiPSC) 分(fen)(fen)化(hua)(hua)為軟(ruan)骨細胞,以創建 cyiPSC 衍生的(de)軟(ruan)骨類(lei)器官 (cyiPS-Cart)。然后研究(jiu)(jiu)人員以同種異體方式(shi)將(jiang)cyiPS-Cart移植到食蟹(xie)猴(hou)膝關節表面的(de)軟(ruan)骨缺損處。cyiPS-Cart 移植物的(de)單細胞 RNA 測序 (scRNA-seq) 和(he)分(fen)(fen)子(zi)分(fen)(fen)析揭示了參與(yu)細胞分(fen)(fen)化(hua)(hua)的(de)分(fen)(fen)子(zi)通路,這些通路在移植后將(jiang) cyiPS-Cart 重塑為關節軟(ruan)骨。

圖片1.png

圖1. 食蟹猴軟(ruan)骨缺損移植模型(xing)構建(jian)及移植前后單細胞測(ce)序分析



應(ying)用(yong)05

疾病易(yi)感基(ji)因篩選

文章題目:Single-cell brain organoid screening identifies developmental defects in autism[2]

發表期(qi)刊:Nature

發表(biao)時間:2023.09

研究背景(jing):人(ren)(ren)(ren)類大腦皮層的(de)發(fa)(fa)(fa)育(yu)是一個獨特且復雜的(de)過程,這可(ke)(ke)能(neng)導致人(ren)(ren)(ren)類相(xiang)(xiang)比于其他物種更(geng)容易患(huan)上神經(jing)發(fa)(fa)(fa)育(yu)障礙(NDD)。然(ran)而神經(jing)發(fa)(fa)(fa)育(yu)障礙,例如自閉癥譜系障礙(ASD),一般只有(you)在(zai)出生后才能(neng)被診斷出來。想(xiang)要在(zai)人(ren)(ren)(ren)源背景(jing)下分析與(yu)ASD相(xiang)(xiang)關的(de)發(fa)(fa)(fa)育(yu)和細胞類型特異(yi)性缺(que)(que)陷也往往僅限于神經(jing)成(cheng)像和死后的(de)組織(zhi)研究。以往的(de)ASD基因的(de)共(gong)表達網絡分析表明,與(yu)ASD相(xiang)(xiang)關的(de)發(fa)(fa)(fa)育(yu)缺(que)(que)陷可(ke)(ke)能(neng)在(zai)胎(tai)兒期(qi)就已產生,但目前也沒有(you)更(geng)好(hao)的(de)辦法去進行(xing)(xing)研究。最近CRISPR篩選(xuan)技(ji)術+類器官+單(dan)細胞轉錄組結合的(de)方(fang)法可(ke)(ke)以允(yun)許對(dui)人(ren)(ren)(ren)類神經(jing)發(fa)(fa)(fa)育(yu)障礙(NDD)進行(xing)(xing)深入探究,但這類方(fang)法尚未在(zai)類器官中(zhong)得到充分的(de)探索。        

研究思路:

sch公眾號(1).jpg

研究結果:

作者團(tuan)隊開發(fa)了(le)(le)一(yi)種(zhong)新系統(tong)來(lai)篩(shai)選與自閉癥(zheng)(zheng)相(xiang)關(guan)的(de)(de)(de)一(yi)整(zheng)套關(guan)鍵轉錄調(diao)控基(ji)(ji)因(yin)。這(zhe)一(yi)新系統(tong)被(bei)命名(ming)為(wei)(wei)——“CHOOSE”(CRISPR-human organoids-scRNA-seq),在該(gai)系統(tong)中(zhong),人類(lei)大(da)(da)腦(nao)(nao)類(lei)器(qi)官(guan)中(zhong)的(de)(de)(de)每(mei)個(ge)細(xi)胞(bao)最多攜帶一(yi)個(ge)特(te)(te)定(ding)的(de)(de)(de)自閉癥(zheng)(zheng)基(ji)(ji)因(yin)突變。研究(jiu)人員可(ke)(ke)以(yi)在單細(xi)胞(bao)水平上追蹤每(mei)個(ge)基(ji)(ji)因(yin)突變的(de)(de)(de)影響,并繪制每(mei)個(ge)細(xi)胞(bao)的(de)(de)(de)發(fa)育軌跡(圖(tu)1)。通過CHOOSE系統(tong)可(ke)(ke)以(yi)在一(yi)個(ge)實驗中(zhong)看(kan)到每(mei)一(yi)個(ge)基(ji)(ji)因(yin)突變產生(sheng)的(de)(de)(de)結果,與傳(chuan)統(tong)方法相(xiang)比大(da)(da)大(da)(da)縮短了(le)(le)分(fen)析(xi)時(shi)間(jian)。使(shi)用CHOOSE系統(tong),研究(jiu)團(tuan)隊發(fa)現,已知與自閉癥(zheng)(zheng)高風險(xian)相(xiang)關(guan)的(de)(de)(de)36個(ge)基(ji)(ji)因(yin)突變導(dao)致發(fa)育中(zhong)的(de)(de)(de)人類(lei)大(da)(da)腦(nao)(nao)中(zhong)特(te)(te)定(ding)的(de)(de)(de)細(xi)胞(bao)類(lei)型的(de)(de)(de)變化(hua),并發(fa)現了(le)(le)導(dao)致關(guan)鍵轉錄變化(hua)的(de)(de)(de)基(ji)(ji)因(yin)調(diao)控網絡(luo)(GRN),這(zhe)是一(yi)組相(xiang)互作用以(yi)調(diao)控特(te)(te)定(ding)細(xi)胞(bao)功能的(de)(de)(de)分(fen)子調(diao)節器(qi)(圖(tu)2)。除了(le)(le)為(wei)(wei)自閉癥(zheng)(zheng)研究(jiu)提供(gong)眼(yan)前一(yi)亮(liang)的(de)(de)(de)新見解外,研究(jiu)團(tuan)隊還強調(diao)了(le)(le)CHOOSE系統(tong)的(de)(de)(de)通用性(xing)(xing)和(he)可(ke)(ke)轉移性(xing)(xing),即(ji)這(zhe)項技術可(ke)(ke)以(yi)被(bei)廣泛應(ying)用于大(da)(da)腦(nao)(nao)類(lei)器(qi)官(guan)以(yi)外,以(yi)研究(jiu)各種(zhong)疾病相(xiang)關(guan)基(ji)(ji)因(yin)。通過這(zhe)項新技術,科(ke)學家(jia)和(he)臨床(chuang)醫(yi)師獲得了(le)(le)一(yi)種(zhong)穩健(jian)且精(jing)確控制的(de)(de)(de)高通量篩(shai)查工(gong)具(ju),大(da)(da)大(da)(da)縮短了(le)(le)分(fen)析(xi)時(shi)間(jian),并為(wei)(wei)了(le)(le)解疾病機制提供(gong)了(le)(le)寶貴見解。

圖片2.png

圖1. 人腦類器官中(zhong)ASD風險基因(yin)多(duo)路篩選的選擇(ze)系統

圖片3.png

圖2. ASD風險基(ji)(ji)因擾動導致(zhi)的基(ji)(ji)因表達和(he)調(diao)控網絡失調(diao)


那除了以上這些文(wen)(wen)章,“類器官+單細(xi)胞(bao)轉錄組(zu)”的文(wen)(wen)章還(huan)有很多,以下是我們檢索的部分(fen)文(wen)(wen)章列表(biao),各位老師可按(an)需下載~

發表(biao)時間

文獻題目

期刊

影響因子

2023

Cochlear organoids reveal transcriptional programs of postnatal hair cell differentiation from supporting cells

Cell Reports

9.995

2023

Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids

iScience

5.8

2022

Modeling Human Thyroid Development by Fetal Tissue-Derived Organoid Culture

Advanced Science

15.1

2023

Identification of target cells of human papillomavirus 18 using squamocolumnar junction organoids

Cancer Science

5.7

2023

Single-cell transcriptomic analysis of corneal organoids during development

Stem Cell Reports

5.9

2023

Single-cell brain organoid screening identifies developmental defects in autism

Nature

64.8

2023

Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids

Nature Communications

16.6

2022

Patient-Derived Organoids from Colorectal Cancer with

Advanced Science

15.1

Paired Liver Metastasis Reveal Tumor Heterogeneity and

Predict Response to Chemotherapy

2022

Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy

Nature cancer

22.7

2019

Single-cell analysis reveals congruence between kidney organoids and human fetal kidney

Genome Medicine

15.2

2024

Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo

Cell Stem Cell

23.9

2020

Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids

Protein & cell

21.1

2020

Progenitor identification and SARS-CoV-2 infection in human distal lung organoids

Nature

64.8

2023

A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection.

Nature Cell Biology

21.3

2023

Single-cell brain organoid screening identifies developmental defects in autism.

Nature

64.8

2022

Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution.

Cell

64.5

2022

Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis

Genome Biology

12.3

2023

Organoid-based single-cell spatiotemporal gene expression landscape of human embryonic development and hematopoiesis

Signal Transduction and Targeted Therapy

39.3

2023

Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model

Cellular and Molecular Gastroenterology and Hepatology

7.2

2023

Key Genetic Determinants Driving Esophageal Squamous Cell Carcinoma Initiation and Immune Evasion

Gastroenterology

29.4

2023

Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect

Nature Communications

16.6

2023

An oncogenic phenoscape of colonic stem cell polarization

Cell

64.5

2023

Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types

Nature Biotechnology

46.9

2023

Multimodal spatiotemporal phenotyping of human retinal organoid development

Nature Biotechnology

46.9

2023

Single-cell profiling of GP2-enriched pancreatic progenitors to simultaneously create acinar, ductal, and endocrine organoids

Theranostics

12.4

滑動查(cha)看~


派森諾生(sheng)物具有豐(feng)富的類器官樣(yang)本單(dan)細胞(bao)解離和分析經驗,歡迎咨詢、合作(zuo)~


參考文獻(xian):

[1]Abe K, Yamashita A, Morioka M, et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun. 2023;14(1):804. 

[2]Li C, Fleck JS, Martins-Costa C, et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature. 2023;621(7978):373-380.